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Slow motion of a slip spheroid along its axis of revolution
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Abstract

A combined analytical and numerical study of the Stokes flow caused by a rigid spheroidal particle translating along its axis of rev-
olution in a viscous fluid is presented. The fluid is allowed to slip at the surface of the particle. The general solution for the stream func-
tion in prolate and oblate spheroidal coordinates can be expressed in an infinite-series form of semi-separation of variables. The slip
boundary condition incorporating the shear stress at the particle surface is applied to this general solution to determine its unknown
coefficients of the leading orders. The solution of these coefficients can be either numerical results obtained from a boundary-collocation
method or explicit formulas derived analytically. The drag force exerted on the spheroidal particle by the fluid is evaluated with good
convergence behavior for various values of the slip parameter and aspect ratio of the particle. The agreement between our hydrodynamic
drag results and the relevant numerical solutions obtained previously using a singularity method is excellent. Although the drag force
acting on the translating spheroid normalized by that on a corresponding sphere with equal equatorial radius increases monotonically
with an increase in the axial-to-radial aspect ratio for a no-slip spheroid, it decreases monotonically as this aspect ratio increases for a
perfect-slip spheroid. The normalized drag force exerted on a spheroid with a given surface slip coefficient in between the no-slip and
perfect-slip limits is not a monotonic function of its aspect ratio. For a spheroid with a fixed aspect ratio, its drag force is a monotonically
decreasing function of the slip coefficient of the particle.
� 2008 Elsevier Ltd. All rights reserved.

Keywords: Axisymmetric creeping flow; Prolate and oblate spheroids; Slip-flow surface; Hydrodynamic drag force
1. Introduction

The movement of a small particle in a fluid at low-Rey-
nolds-numbers is of much fundamental and practical inter-
est in the areas of chemical, biomedical, and environmental
engineering and science. The theoretical treatment of this
subject has grown out of the classic work of Stokes
(1851) for a translating rigid sphere in an unbounded New-
tonian fluid. Oberbeck (1876) extended this result to the
translation of an ellipsoid. More recently, analytical solu-
tions of the creeping-flow problem have been obtained
for rigid particles whose shape corresponds to a coordinate
surface of a special orthogonal curvilinear coordinate sys-
tem in which the Stokes equations can be solved using
the separation of variables (Payne and Pell, 1960; Goren
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and O’Neill, 1980) and for long slender bodies (Batchelor,
1970; Cox, 1970). Explicit expressions for the resistance
experienced by a slightly deformed sphere undergoing
low-Reynolds-number motions in an unbounded fluid were
also derived to the first order of the small parameter char-
acterizing the deformation (Brenner, 1964).

In the general formulation of the Stokes problem, it is
usually assumed that no slippage arises at the solid–fluid
interfaces. Actually, this is an idealization of the transport
processes involved. The phenomena that the adjacent fluid
can slip frictionally over a solid surface, occurring in cases
such as the low-density gas flow surrounding an aerosol
particle (Kennard, 1938; Hutchins et al., 1995; Keh and
Shiau, 2000), the aqueous liquid flow near a hydrophobic
surface (Tretheway and Meinhart, 2002; Gogte et al.,
2005), and the Newtonian fluid flow over a porous surface
(Beavers and Joseph, 1967; Saffman, 1971; Jones, 1973;
Nir, 1976), have been confirmed, both experimentally and
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Fig. 1. Geometrical sketch for the motion of a spheroidal particle along
its axis of revolution.
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theoretically. Presumably, any such slipping would be pro-
portional to the local tangential viscous stress next to the
solid surface (Happel and Brenner, 1983; Keh and Chen,
1996), known as the Navier slip (see Eq. (9b)), at least as
the velocity gradient is small. The constant of proportion-
ality, b�1, is called a ‘‘slip coefficient”.

Basset (1961) found that the drag force exerted by the
fluid of viscosity g on a translating rigid sphere of radius
b with a slip-flow boundary condition at its surface is

F ¼ �6pgbU
bbþ 2g
bbþ 3g

; ð1Þ

where U is the translational velocity of the particle. The
quantity g/b is a length, which can be pictured by noting
that the fluid motion is the same as if the solid surface is
displaced inward by a distance g/b with the velocity gradi-
ent extending uniformly right up to no-slip velocity at the
surface. In the limiting case of bb/g ?1, there is no slip
at the particle surface and Eq. (1) degenerates to the
well-known Stokes law. When bb/g ? 0, there is a perfect
slip at the particle surface and the particle acts like a spher-
ical inviscid gas bubble.

The slip coefficient in Eq. (1) has been determined exper-
imentally for various gas–solid system and found to agree
with the general kinetic theory of gases. It can be evaluated
from the formula

b�1 ¼ Cml
g
; ð2Þ

where l is the mean free path of a gas molecule, and Cm is a
dimensionless constant related to the momentum accom-
modation coefficient at the solid surface (Kennard, 1938).
Although Cm surely depends upon the nature of the surface
and adjacent fluid, examinations of the experimental data
and theoretical predictions suggest that it will be in the
range 1.0–1.5 (Davis, 1972; Talbot et al., 1980; Sharipov
and Kalempa, 2003). The reciprocal of the ratio (bb +
2g)/(bb + 3g) in Eq. (1) is equivalent to the so-called Cunn-
ingham correction factor for the slip effect of an aerosol
sphere.

The problem of slow motion of nonspherical particles
with frictionally slip surfaces is a matter of great analytical
difficulty and was usually estimated by an adjusted sphere
approximation (Dahneke, 1973). This simple approxima-
tion comprises calculating the radius of the adjusted sphere
which has the same slip correction factor as the nonspheri-
cal particle. On the other hand, the axisymmetric creeping
flow of a viscous incompressible fluid past a slip spheroid
which departs slightly in shape from a sphere was investi-
gated by several researchers (Palaniappan, 1994; Ramkis-
soon, 1997), and an explicit expression for the drag force
experienced by the particle was given to the first order in
the small parameter characterizing the deformation of the
particle from the spherical shape. However, their approach
was wrong from the very onset, since they chose an incor-
rect boundary condition on the surface of the slightly
deformed sphere, as pointed out by Senchenko and Keh
(2006), who analyzed the translation and rotation of a
slightly deformed slip sphere in arbitrary directions. The
slow motion caused by a general axisymmetric particle with
a slip surface translating along its axis of revolution was
also numerically examined to some extent by using a
method of internal singularity distributions (Keh and
Huang, 2004). However, the problem of the slow motion
of a general slip spheroid in a viscous fluid has not been
analytically solved yet, mainly due to the fact that, if
momentum slip is included, a simple separation-of-variable
solution is not feasible for the prolate and oblate spheroi-
dal coordinate systems (Leong, 1984; Williams, 1986).

In the present work, a semi-separable general solution in
the form of an infinite series expansion for the axisymmet-
ric creeping flow in spheroidal coordinates developed by
Dassios et al. (1994) is used to investigate the Stokes prob-
lem of a slip prolate or oblate spheroidal particle translat-
ing steadily along its axis of revolution. The drag force
exerted on the spheroid by the ambient fluid as a function
of the slip parameter and aspect ratio of the spheroid can
be expressed in an approximate but explicit form and cal-
culated numerically using a boundary-collocation method.
Our drag results show excellent agreement with the
available analytical and numerical solutions obtained
previously.
2. Analysis

We consider the translational motion of a spheroidal
particle along its axis of revolution in an incompressible,
Newtonian fluid at the steady state, as shown in Fig. 1.
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The fluid may slip frictionally at the surface of the particle
and is at rest at infinity. For convenience, circular cylindri-
cal coordinates (q,/,z) are established such that the surface
of the spheroid is represented by

z2

a2
þ q2

b2
¼ 1; ð3Þ

where a and b are the half-length along the axis of revolu-
tion and the equatorial radius, respectively, of the spher-
oid. The particle velocity equals Uez, where ez is the unit
vector in the positive z-direction.

The Reynolds number is assumed to be sufficiently small
so that the inertial terms in the fluid momentum equation
can be neglected in comparison with the viscous terms.
Therefore, the fluid motion is governed by the steady
fourth-order differential equation for viscous axisymmetric
creeping flows,

E4W ¼ E2ðE2WÞ ¼ 0; ð4Þ

in which the Stokes stream function W(k,x) is related to the
velocity components (with v/ = 0) in right-handed bifocal
coordinates (n,u,/) by (Happel and Brenner, 1983)

vk ¼
1

c2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � x2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � 1

p oW
ox

; ð5aÞ

vx ¼
1

c2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � x2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

oW
ok

; ð5bÞ

and the Stokes operator E2 has the form

E2 ¼ 1

c2ðk2 � x2Þ
ðk2 � 1Þ o2

ok2
þ ð1� x2Þ o2

ox2

� �
: ð6Þ

Here, x and k are the variables and c is a constant related
to the bifocal-coordinate transformations.

For prolate spheroids (b < a), the coordinate transfor-
mation used is

k ¼ cosh n; x ¼ cos u;

z ¼ c cosh n cos u; q ¼ c sinh n sin u;

a ¼ c cosh n0; b ¼ c sinh n0;

c ¼ ða2 � b2Þ1=2

ð7Þ

while for oblate spheroids (b > a), the coordinate transfor-
mation becomes

k ¼ i sinh n; x ¼ cos u;

z ¼ ic sinh n cos u; q ¼ ic cosh n sin u;

a ¼ ic sinh n0; b ¼ ic cosh n0;

c ¼ �iðb2 � a2Þ1=2
:

ð8Þ

The origin (midpoint between the foci) of the bifocal coor-
dinates (with 0 6 n <1 and 0 6 u 6 p) is also set at the
center of the spheroid, and the coordinate surface
k = k0 = [1 � (b/a)2]�1/2 (or n = n0) corresponds to the sur-
face of the spheroid defined by Eq. (3).

There exists a frictional slip velocity along the particle
surface and the fluid flow vanishes far from the particle.
Hence, the boundary conditions for the flow field are (Hap-
pel and Brenner, 1983)

vk ¼ 0

vx ¼ 1
b skx

9>=
>; on k ¼ k0; ð9a; bÞ

W! 1

2
Uc2ðk2 � 1Þð1� x2Þ as k!1; ð10Þ

where 1/b is the frictional slip coefficient, skx is the fluid
shear stress expressed as

skx ¼ g
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � 1

p o

ok
ðhvxÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p o

ox
ðhvkÞ

� �
; ð11Þ

and h = c�1(k2 � x2)�1/2 is a metric coefficient in bifocal
coordinates. Note that Eq. (9) and (10) take a reference
frame that the particle is at rest and the velocity of the fluid
at infinity is the particle velocity in the opposite direction.

A general solution of the Stokes Eq. (4) in bifocal coor-
dinates has been obtained by Dassios et al. (1994) in a ser-
ies expansion of semi-separable form as

Wðk;xÞ ¼ Uc2
X1
k¼1

g2kðkÞG2kðxÞ; ð12Þ

where

g2ðkÞ ¼ A1G1ðkÞ þ C2G2ðkÞ þ D2H 2ðkÞ þ A4G4ðkÞ
þ B4H 4ðkÞ; ð13aÞ

gnðkÞ ¼ AnGn�2ðkÞ þ BnH n�2ðkÞ þ CnGnðkÞ
þ DnH nðkÞ þ Anþ2Gnþ2ðkÞ
þ Bnþ2H nþ2ðkÞ for n ¼ 4; 6; 8; . . . : ð13bÞ

In the above equations, Gn(k) and Hn(k) denote the Gegen-
bauer functions of the first and second kinds, respectively,
of order n and degree �1/2, and An, Bn, Cn, and Dn are un-
known coefficients to be determined. Note that each indi-
vidual term in Eq. (12) is not a solution of Eq. (4),
whereas the entire expansion, which is not a complete sep-
aration of the variables x and k, is. Because the stream
function is symmetric about the equatorial plane z = 0,
only the even terms of the expansion in Eq. (12) are re-
tained. In accordance with Eq. (10), we immediately find
that C2 = -2 and An = Cn = 0 for n P 4 in Eqs. (13). Note
that, in the previous studies of some relevant problems
(Dassios et al., 1994, 1995; Deo and Datta, 2002), the coef-
ficient B4 was taken to be zero and their results are appli-
cable only for the case of axisymmetric motion of a
slightly deformed sphere (with a/b ? 1). In fact, the article
by Deo and Datta (2002) contains some major errors in the
determination of the nonzero unknown coefficients in Eqs.
(13).

Applying Eqs. (5a) and (12) to boundary condition (9a),
we obtain

X1
k¼1

g2kðk0ÞP 2k�1ðxÞ ¼ 0; ð14Þ
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where Pn(x) is the Legendre polynomial of order n. From
the orthogonal characteristic of the Legendre polynomials,
Eq. (14) is equivalent to

gnðk0Þ ¼ 0 for n ¼ 2; 4; 6; . . . ; ð15Þ

and the dependence on x disappears. The substitution of
Eqs. (5), (11), (12), (13), and (15) into the slip boundary
condition (9b) at the particle surface leads to

X1
k¼1

h2kðk0;xÞG2kðxÞ ¼ 0; ð16Þ

where

hnðk;xÞ ¼
g
bc
ðk2 � x2Þg00nðkÞ � 2kg0nðkÞ
� �

� ðk
2 � x2Þ3=2ffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � 1
p g0nðkÞ for n ¼ 2; 4; 6; . . . ; ð17Þ

and a prime on gn(k) denotes a differentiation with respect
to k. The unknown coefficients A1, D2, B4, D4, B6, etc., in
Eqs. (13) are to be determined using Eqs. (15) and (16).

The drag force Fez exerted by the fluid on the particle
can be determined from (Payne and Pell, 1960; Happel
and Brenner, 1983)

F ¼ 8pgc lim
k!1

k
W
q2
� U

2

� �
: ð18Þ

The substitution of Eqs. (12) and (13) into Eq. (18) yields

F ¼ �4pgcUA1: ð19Þ

This expression shows that only the lowest-order coefficient
A1 contributes to the hydrodynamic force acting on the
particle.

In the following two subsections, we present a bound-
ary-collocation method to obtain a numerical solution for
the unknown coefficients A1, D2, B4, D4, B6, etc., in Eqs.
(13) and an analytical method to result in explicit formulas
for these coefficients of leading orders.

2.1. Boundary-collocation method

To satisfy the boundary conditions (15) and (16) exactly
along the entire semi-elliptic generating arc of the spheroid
in a meridian plane would require the solution of the entire
infinite array of the unknown constants A1, D2, B4, D4,
B6, etc. However, the boundary-collocation technique
(O’Brien, 1968; Gluckman et al., 1971) enforces the bound-
ary conditions at a finite number of discrete points on the
particle’s quarter-elliptic longitudinal arc (from u = 0 to
p/2, owing to the symmetry of the system geometry) and
truncates the infinite series in Eqs. (12) and (16) into finite
ones. The unknown constants in the terms of the finite ser-
ies permit one to satisfy the exact boundary conditions at
the discrete points on the particle surface. Thus, if the
boundary is approximated by satisfying condition (16) at
N discrete points, then the infinite series are truncated after
N terms, resulting in a system of 2N simultaneous linear
algebraic equations [including first N equations of condi-
tion (15)]. This matrix equation can be solved by any of
the standard matrix-reduction techniques to yield the 2N

unknown constants A1, D2, B4, D4, B6, etc., required in
the truncated Eq. (12) for the flow field.

Actually, the system resulting from the boundary-collo-
cation has 2N + 1 unknown constants but only 2N alge-
braic equations. Even so, this problem can be solved if
the last unknown constant B2N+2 is negligible. Of course,
the more terms are retained in Eq. (12), the less error will
be caused by omitting the coefficient B2N+2. The accuracy
of the truncation technique can also be improved to any
degree by taking a sufficiently large value of N. Naturally,
the truncation (including omission of the coefficient B2N+2)
error vanishes as N ?1.

2.2. Analytical method

On the other hand, an analytical solution for the leading
unknowns A1, D2, B4, D4, B6, etc., required in Eq. (12) for
the flow field can be found. To simplify the boundary con-
dition given by Eqs. (16) and (17), we first expand the func-
tion ðk2

0 � x2Þ3=2 into a Taylor series in exp (�n0) with
respect to n0 ?1 (only odd terms are nonzero) and then
apply the recurrence relation (Dassios et al., 1994)

x2GnðxÞ ¼ anGn�2ðxÞ þ cnGnðxÞ þ bnGnþ2ðxÞ
for n P 2; ð20Þ

with

an ¼
ðn� 3Þðn� 2Þ
ð2n� 3Þð2n� 1Þ ; ð21aÞ

bn ¼
ðnþ 1Þðnþ 2Þ
ð2n� 1Þð2nþ 1Þ ; ð21bÞ

cn ¼
ð2n2 � 2n� 3Þ
ð2n� 3Þð2nþ 1Þ ; ð21cÞ

to result in the expansion

ðk2
0 � x2Þ3=2ffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
0 � 1

q GmðxÞ ¼
X1
k¼1

smð2kÞG2kðxÞ; ð22Þ

where the coefficients smn are known functions of exp(�n0)
with the first ones given by Eq. (A.6) in Appendix A.
Substituting Eq. (22) into Eqs. (16) and (17), applying
Eq. (20) again, and using the orthogonal property of the
Gegenbauer polynomials, we obtain

g
bc
ðk2

0 � cnÞg00nðk0Þ � 2k0g0nðk0Þ � bn�2g00n�2ðk0Þ
�

�anþ2g00nþ2ðk0Þ
�
¼
X1
k¼1

sð2kÞn g02kðk0Þ for n ¼ 2; 4; 6; . . . ;

ð23Þ

in which the dependence on x disappears.
If Eq. (12) for the fluid flow is truncated after N terms,

the first N equations of each of Eqs. (15) and (23) can be



Table 1
Boundary-collocation results of the dimensionless drag force for the
motion of a prolate spheroid along its axis of revolution for various values
of the aspect ratio and slip parameter of the spheroid

bb/g N �F/6pgbU

a/b = 1.1 a/b = 2 a/b = 5 a/b = 10

1 2 1.0201 1.2039 1.7848 2.6471
3 1.0201 1.2039 1.7848 2.6471
4 1.0201 1.2039 1.7848 2.6471
Exact solution 1.0201 1.2039 1.7848 2.6471

10 13 0.9415 1.1163 1.6783 2.5144
14 0.9415 1.1163 1.6783 2.5145
15 0.9415 1.1163 1.6783 2.5145
Singularity solution 0.9415 1.1163 1.6783

1 14 0.7520 0.8141 1.1750 1.8047
15 0.7520 0.8141 1.1750 1.8048
16 0.7520 0.8141 1.1750 1.8048
Singularity solution 0.7520 0.8141 1.1750

0 19 0.6537 0.5635 0.4027 0.2834
20 0.6537 0.5635 0.4027 0.2835
21 0.6537 0.5635 0.4027 0.2835
Singularity solution 0.6537 0.5635 0.3999

Exact solutions and singularity solutions are obtained from Happel and
Brenner (1983) and Keh and Huang (2004), respectively.
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used to solve the 2N unknown constants A1, D2, B4, D4, B6,
etc. Similar to the case in the previous subsection, the con-
stant B2N+2 is neglected in the solution and the accuracy
will be acceptable when the value of N is sufficiently large.
Again, the truncation error disappears as N ?1. In
Appendix A, the four algebraic equations required to solve
the unknown coefficients A1, D2, B4, and D4 and their expli-
cit solution are given for a specific case that Eq. (12) is
truncated after two terms (N = 2). Although we have also
obtained the explicit solution for the unknown coefficients
A1, D2, B4, D4, B6, and D6 for the more accurate case of
N = 3, its formulas are not presented here for conciseness.

3. Results and discussion

In this section, we first present the numerical results of
the hydrodynamic drag force acting on a slip spheroidal
particle undergoing steady translation along its axis of rev-
olution obtained by using the semi-separable general solu-
tion combined with the boundary-collocation method
described in Section 2.1. Then, the leading-order asymp-
totic solutions for this drag force resulting from the analyt-
ical method introduced in Section 2.2 will be given and
compared with the convergent collocation solutions.

3.1. Boundary-collocation solutions

The system of linear algebraic equations to be solved for
the coefficients A1, D2, B4, D4, B6, etc., using the boundary-
collocation method is constructed from Eqs. (15) and (16).
When specifying the N points along the quarter-elliptic
generating arc of the spheroid where the boundary condi-
tion (9a,b) or (16) is to be exactly satisfied, the first point
that should be chosen is u = p/2 (or x = 0), since this point
defines the projected area of the particle normal to the
direction of motion. In addition, the point u = 0 (or
x = 1) is also important. However, an examination of the
system of linear algebraic equations in the truncated form
of Eq. (16) shows that the matrix equation becomes singu-
lar if these points are used. To overcome this difficulty,
these points are replaced by closely adjacent points, i.e.,
u = d and p/2 � d (Gluckman et al., 1971). Additional
points along the boundary are selected to divide the quar-
ter-elliptic arc of the spheroid into segments with equal
angles in u. The optimum value of d in this work is found
to be 0.01�, with which the numerical results of the hydro-
dynamic drag force acting on the particle converge
satisfactorily.

In Tables 1 and 2, the boundary-collocation results of
�F/6pgbU, the hydrodynamic drag force for the axisym-
metric motion of a prolate spheroid and an oblate spher-
oid, respectively, normalized by that of a sphere with
equal equatorial radius are presented for several values of
the axial-to-radial aspect ratio a/b and the slip parameter
bb/g. All of the results were obtained by increasing the
number of collocation points N until the convergence of
four significant digits is achieved. The exact analytical solu-
tions for the axisymmetric motion of a no-slip spheroid
(with bb/g ?1) obtained from Happel and Brenner
(1983) are also given in these tables for comparison. It
can be seen that our results from the boundary-collocation
method agree excellently with the exact solutions in this
limit. In general, the convergence behavior of the method
is quite good, even for the relatively difficult case of quite
large or quite small aspect ratio a/b and very small slip
parameter bb/g.

Recently, Keh and Huang (2004) investigated the prob-
lem of slow translation of an axisymmetric slip particle
along its axis of revolution using a method of internal sin-
gularity distribution combined with the boundary-colloca-
tion technique. Their values of the dimensionless drag
force �F/6pgbU for a slip spheroid (only available for
the aspect ratio in the range 0.2 6 a/b 6 5) are also listed
in Tables 1 and 2 for comparison. As one can see in these
tables, our results agree very well with those derived from
the singularity method, except for the case that a/b = 5
and bb/g = 0, in which the value given by Keh and Huang
is not a convergent result. Note that, when the singularity
method is used, the numerical solutions only converge in a
narrow range of the number of the retained terms in the
infinite-series general solution and the number of the
divided segments for the distributed singularities. How-
ever, this convergence problem is entirely eliminated if
we use the current method with Eq. (12) for the general
solution in an expansion form of semi-separation of
variables.

Our numerical results of the dimensionless drag force
�F/6pgbU for the axisymmetric motion of a prolate spher-
oid and an oblate spheroid as a function of the aspect ratio
a/b for several different values of the slip parameter bb/g



Table 2
Boundary-collocation results of the dimensionless drag force for the motion of an oblate spheroid along its axis of revolution for various values of the
aspect ratio and slip parameter of the spheroid

bb/g N �F/6pgbU

a/b = 0.9 a/b = 0.5 a/b = 0.2 a/b = 0.1

1 2 0.9801 0.9053 0.8615 0.8525
3 0.9801 0.9053 0.8615 0.8525
4 0.9801 0.9053 0.8615 0.8525
Exact solution 0.9801 0.9053 0.8615 0.8525

10 13 0.9052 0.8448 0.8316 0.8397
14 0.9052 0.8448 0.8316 0.8396
15 0.9052 0.8448 0.8316 0.8396
Singularity solution 0.9052 0.8448 0.8316

1 16 0.7496 0.7696 0.8157 0.8356
17 0.7496 0.7696 0.8157 0.8355
18 0.7496 0.7696 0.8157 0.8355
Singularity solution 0.7496 0.7696 0.8157

0 15 0.6804 0.7470 0.8122 0.8348
16 0.6804 0.7470 0.8122 0.8347
17 0.6804 0.7470 0.8122 0.8347
Singularity solution 0.6804 0.7470 0.8123

Exact solutions and singularity solutions are obtained from Happel and Brenner (1983) and Keh and Huang (2004), respectively.
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are plotted in Figs. 2 and 3, respectively. As indicated in
Eq. (1), this dimensionless force equals (bb/g + 2)/(bb/
g + 3) for the special case of a slip sphere (with a/b = 1).

For a prolate spheroid with a no-slip surface (bb/
g ?1) or a slip surface having large values of bb/g
(greater than about 1), as shown in Fig. 2, the value of
�F/6pgbU increases monotonically with an increase in
the value of a/b. For a slip prolate spheroid with a
small but finite value of bb/g (less than about 1), however,
�F/6pgbU first decreases with an increase in a/b, reaches a
minimum, and then increases monotonically with a further
Fig. 2. Plots of the dimensionless drag force for the motion of a prolate
spheroid with a slip surface along its axis of revolution versus the aspect
ratio of the spheroid for various values of the slip parameter bb/g.
increase in a/b. This behavior is understandable since the
major portion of the fluid slip at the particle surface occurs
in the direction of the particle’s movement, which causes
a smaller viscous retardation (in comparison with the
case of a slip sphere of radius b), as the aspect ratio a/b
increases from unity. When a/b becomes larger for a spec-
ified value of the equatorial radius b, however, the effect of
the increase in the surface area (which experiences the
hydrodynamic drag) of the prolate spheroid in comparison
with a sphere of radius b dominates, and the dimensionless
drag increases with an increase in a/b. For the particular
Fig. 3. Plots of the dimensionless drag force for the motion of an oblate
spheroid with a slip surface along its axis of revolution versus the aspect
ratio of the spheroid for various values of the slip parameter bb/g.



Table 4
Leading-order asymptotic results of the dimensionless drag force for the
motion of an oblate spheroid along its axis of revolution for various values
of the aspect ratio and slip parameter of the spheroid

bb/g N �F/6pgbU

a/b = 0.9 a/b = 0.7 a/b = 0.5 a/b = 0.2

10 2 0.9052 0.8719 0.8445 0.8240
3 0.9052 0.8719 0.8447 0.8272
Collocation solution 0.9052 0.8719 0.8448 0.8316

1 2 0.7496 0.7544 0.7676 0.7941
3 0.7496 0.7546 0.7694 0.8078
Collocation solution 0.7496 0.7546 0.7696 0.8157

0 2 0.6804 0.7109 0.7446 0.7885
3 0.6805 0.7111 0.7467 0.8039
Collocation solution 0.6804 0.7111 0.7470 0.8122

Table 3
Leading-order asymptotic results of the dimensionless drag force for the
motion of a prolate spheroid along its axis of revolution for various values
of the aspect ratio and slip parameter of the spheroid

bb/g N �F/6pgbU

a/b = 1.1 a/b = 2 a/b = 3 a/b = 5

10 2 0.9415 1.1165 1.3110 1.6821
3 0.9415 1.1163 1.3101 1.6793
Collocation solution 0.9415 1.1163 1.3100 1.6783

1 2 0.7520 0.8126 0.9192 1.1677
3 0.7520 0.8139 0.9227 1.1697
Collocation solution 0.7520 0.8141 0.9242 1.1750

0 2 0.6537 0.5603 0.4790 0.3605
3 0.6537 0.5631 0.4908 0.3853
Collocation solution 0.6537 0.5635 0.4944 0.4027
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case of a perfect-slip spheroid (with bb/g = 0), the effect of
the fluid slip at the particle surface is always more signifi-
cant than that of the increase in the surface area, thus
the dimensionless drag force decreases monotonically with
an increase in a/b and vanishes in the limit a/b ?1. As
expected, �F/6pgbU decreases monotonically with a
decrease in the slip parameter bb/g (or an increase in the
surface slip coefficient b�1) for a given shape of prolate
spheroids, and this dependence becomes quite sensitive
when the value of a/b is large (say, greater than 2.5).

For an oblate spheroid with a no-slip surface (bb/
g ?1), as illustrated in Fig. 3, the value of the dimension-
less drag force �F/6pgbU decreases monotonically as the
ratio a/b decreases, because of the reduction in the surface
area for a given value of b. For an oblate spheroid with a
slip surface having large but finite values of bb/g (greater
than about 1), the dimensionless drag first decreases with
a decrease in a/b, reaches a minimum, and then increases
with a further decrease in a/b. For a slip oblate spheroid
with small values of bb/g (less than about 1), the value of
�F/6pgbU increases monotonically with a decrease in a/
b. This behavior is understood since the main component
of the fluid slip at the particle surface is in the direction
normal to the motion of the spheroid, which has little con-
tribution to reduce the viscous retardation (in comparison
with the case of a slip sphere) when the value of a/b
becomes small. Similar to the case of prolate spheroids,
�F/6pgbU is a monotonically increasing function of bb/g
for oblate spheroids with a fixed value of a/b, and its
dependence becomes less sensitive when the value of a/b
is smaller. In the limit a/b = 0, �F/6pg bU equals a con-
stant 8/3p ffi 0.849, regardless of the value of bb/g.

3.2. Asymptotic analytical solutions

As discussed in Section 2.2, the coefficients A1, D2, B4,
D4, B6, etc., in Eqs. (12) and (13) for the Stokes flow
induced by a spheroid translating along its axis of revolu-
tion can be solved explicitly using Eqs. (15) and (23) when
the infinite series are truncated into finite N terms.
Although the truncation error disappears as N ?1, only
the approximate solutions with small values of N can be
obtained in practice. In Tables 3 and 4, we present the
asymptotic results with N = 2 and N = 3 (although some
cases of N > 3 can also be obtained, only the case of
N = 2 is formulated in Appendix A for conciseness) of
the nondimensional drag force �F/6pgbU for the axisym-
metric motion of a prolate spheroid and an oblate spheroid
for various values of the aspect ratio a/b and the slip
parameter bb/g. The relevant boundary-collocation solu-
tions obtained in the previous subsection is also listed in
these tables for comparison. One can see that the larger
the value of N is (say, N = 3, where the analytical solution
agrees well with the numerical solution for cases of a mod-
erate aspect ratio in the range 0.5 6 a/b 6 2), the more
accurate the results will be. When the aspect ratio a/b devi-
ates much from unity, the agreement between the approx-
imate values of the hydrodynamic drag force with N = 3
and the convergent collocation results is not as good as
the cases with a/b close to unity. For the limiting case of
no-slip spheroids (with bb/g ?1), only the first term of
the infinite series in Eq. (12) is nonzero, and the explicit
expression for the drag force derived from Eqs. (15) and
(23) is exactly the same as that given in Happel and Bren-
ner (1983) using the separable form general solution in
spheroidal coordinates.
4. Concluding remarks

In this paper, the boundary-collocation numerical solu-
tions and asymptotic analytical solutions for the drag force
experienced by a rigid spheroidal particle translating slowly
and steadily along its axis of revolution in a viscous fluid
are obtained, where the fluid may slip at the particle sur-
face. The general solution for the Stokes stream function
in spheroidal coordinates is expressed as an infinite series
expansion in a semi-separable form, in which the unknown
coefficients can be determined analytically to their leading
orders and numerically with excellent convergence. It has
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been found that, for various values of the slip parameter
bb/g and axial-to-radial aspect ratio a/b of the prolate or
oblate spheroidal particle, the agreement between our
results of the hydrodynamic drag force and the available
numerical solutions obtained by using a singularity method
is quite good. Although the normalized drag force �F/
6pgbU acting on the translating spheroid increases mono-
tonically with an increase in the aspect ratio a/b for a no-
slip spheroid, it decreases monotonically as this aspect ratio
increases for a perfect-slip spheroid. The hydrodynamic
drag force exerted on a spheroid with intermediate values
of its slip parameter is not a monotonic function of its
aspect ratio a/b. For a spheroid with a given aspect ratio,
its drag force is a monotonically increasing function of
the slip parameter bb/g of the spheroid.

It is worth repeating that an exact analytical solution for
a problem of slow motion of a spheroid with a frictional
slip surface in a viscous fluid is not feasible since a complete
separation-of-variable general solution for the Stokes flow
does not exist in prolate or oblate spheroidal coordinates.
This difficulty has been resolved to a great extent in the
present study through the use of a method of semi-separa-
tion of variables (it turns out that the first term of the series
solution for the stream function is sufficient for the no-slip
case). An analytical solution for the motion of a spheroid
along its axis of revolution is obtained with very good
accuracy for all values of the slip parameter bb/g within
the aspect-ratio range 0.5 6 a/b 6 2. In addition, this
method of semi-separation of variables incorporated with
a boundary-collocation technique can be used to obtain
numerical solutions for the same motion convergent and
correct for arbitrary values of bb/g and a/b. These colloca-
tion solutions are much superior to those resulting from a
method of distributed internal singularities (Keh and
Huang, 2004), in which the convergence behavior is rela-
tively poor and no solution could be obtained outside the
aspect-ratio range 0.2 6 a/b 6 5. Our approach and results
can be very useful for the calculations of the thermophoret-
ic or photophoretic mobility of an aerosol spheroid (Talbot
et al., 1980; Leong, 1984; Keh and Tu, 2001; Keh and Ou,
2004; Ou and Keh, 2005) in which both frictional and ther-
mal slip velocities occur at the particle surface.
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Appendix A. Analytical solution for the coefficients in

Eq. (12) truncated after two terms

When Eq. (12) for the Stokes stream function is trun-
cated after two terms (N = 2),

W ¼ g2ðkÞG2ðxÞ þ g4ðkÞG4ðxÞ; ðA:1Þ
where g2(k) and g4(k) are expressed by Eqs. (13) with
C2 = �2 and A4 = C4 = A6 = 0, the boundary conditions
(15) and (23) for n = 2 and 4 become

g2ðk0Þ ¼ A1G1ðk0Þ � 2G2ðk0Þ þ D2H 2ðk0Þ
þ B4H 4ðk0Þ ¼ 0; ðA:2Þ

g4ðk0Þ ¼ B4H 2ðk0Þ þ D4H 4ðk0Þ þ B6H 6ðk0Þ ¼ 0; ðA:3Þ
g
bc
ðk2

0 � c2Þ 2þ D2H 002ðk0Þ þ B4H 004ðk0Þ
� �	

þ 2k0 A1 � 2k0 � D2H 02ðk0Þ � B4H 04ðk0Þ
� �

�a4 B4H 002ðk0Þ þ D4H 004ðk0Þ þ B6H 006ðk0Þ
� �


¼ s22 �A1 þ 2k0 þ D2H 02ðk0Þ þ B4H 04ðk0Þ
� �

þ s42½B4H 02ðk0Þ þ D4H 04ðk0Þ þ B6H 06ðk0Þ�; ðA:4Þ
g
bc
ðk2

0 � c4Þ B4H 002ðk0Þ þ D4H 004ðk0Þ þ B6H 006ðk0Þ
� �	

� 2k0 B4H 02ðk0Þ þ D4H 04ðk0Þ þ B6H 06ðk0Þ
� �

�b2½2þ D2H 002ðk0Þ þ B4H 004ðk0Þ�



¼ s24½�A1 þ 2k0 þ D2H 02ðk0Þ þ B4H 04ðk0Þ�
þ s44½B4H 02ðk0Þ þ D4H 04ðk0Þ þ B6H 06ðk0Þ�: ðA:5Þ

Here, a prime on Hn(k) denotes a differentiation with re-
spect to k, and

s22 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
0 � 1

q 1

8
e3n0 þ 9

40
en0 þ 81

280
e�n0

�

þ 71

840
e�3n0 þ 6

385
e�5n0 � 18

5005
e�7n0 þ � � �

�
; ðA:6aÞ

s24 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
0 � 1

q � 3

5
en0 � 1

5
e�n0 � 12

55
e�3n0

�

þ 36

715
e�5n0 þ 4

715
e�7n0 þ � � �

�
; ðA:6bÞ

s42 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
0 � 1

q � 3

70
en0 � 1

70
e�n0 � 6

385
e�3n0

�

þ 18

5005
e�5n0 þ 2

5005
e�7n0 þ � � �

�
; ðA:6cÞ

s44 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
0 � 1

q 1

8
e3n0 þ 1

40
en0 þ 117

440
e�n0

�

þ 31

17160
e�3n0 þ 16

715
e�5n0 þ 48

12155
e�7n0 þ � � �

�
:

ðA:6dÞ

Note that all smn are convergent for a given value of n0.
Eqs. (A.2)–(A.5) with the terms involving the coefficient

B6 being neglected are used to determine the coefficients A1,
D2, B4, and D4, and their result in explicit forms is

A1 ¼ ðfck23 � f2kc3ÞH 4ðk0Þ þ k4H 2ðk0Þ½fcH 2ðk0Þf
þf2ðk2

0 � 1Þ� þ f34kc2



C; ðA:7aÞ

D2 ¼ ðf1kc3 � fck13ÞH 4ðk0Þ þ k4H 2ðk0Þ½fck0f
�f1ðk2

0 � 1Þ� þ f34kc1



C; ðA:7bÞ
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B4 ¼ �H 4ðk0Þðfck12 � f2kc1 � f1kc2ÞC; ðA:7cÞ

D4 ¼ �
H 2ðk0Þ
H 4ðk0Þ

B4; ðA:7dÞ

where

C ¼ fðf1k23 � f2k13ÞH 4ðk0Þ þ k4H 2ðk0Þ½f1H 2ðk0Þ

þ f2k0� þ f34k12g�1
; ðA:8Þ

f1 ¼ s22 þ
g
bc

2k0; ðA:9aÞ

f2 ¼ �s22H 02ðk0Þ þ
g
bc
ðk2

0 � c2ÞH 002ðk0Þ
�

�2k0H 02ðk0Þ
�
; ðA:9bÞ

f3 ¼ �s42H 02ðk0Þ � s22H 04ðk0Þ þ
g
bc
ðk2

0 � c2ÞH 004ðk0Þ
�

�2k0H 04ðk0Þ � a4H 002ðk0Þ
�
; ðA:9cÞ

f4 ¼ �s42H 04ðk0Þ �
g
bc

a4H 004ðk0Þ; ðA:9dÞ

fc ¼ 2 s22k0 þ
g
bc
ðk2

0 þ c2Þ
� �

; ðA:9eÞ

k1 ¼ s24; ðA:9fÞ

k2 ¼ �s24H 02ðk0Þ �
g
bc

b2H 002ðk0Þ; ðA:9gÞ

k3 ¼ �s44H 02ðk0Þ � s24H 04ðk0Þ þ
g
bc
ðk2

0 � c4ÞH 002ðk0Þ
�

�2k0H 02ðk0Þ � b2H 004ðk0Þ
�
; ðA:9hÞ

k4 ¼ �s44H 04ðk0Þ þ
g
bc
ðk2

0 � c4ÞH 004ðk0Þ
�

�2k0H 04ðk0Þ
�
; ðA:9iÞ

kc ¼ 2 s24k0 þ
g
bc

b2

� �
; ðA:9jÞ

f34 ¼ f3H 4ðk0Þ � f4H 2ðk0Þ; ðA:9kÞ
k12 ¼ k1H 2ðk0Þ þ k2k0; ðA:9lÞ
k13 ¼ k1H 4ðk0Þ þ k3k0; ðA:9mÞ
k23 ¼ k2H 4ðk0Þ � k3H 2ðk0Þ; ðA:9nÞ
kc1 ¼ kck0 � k1ðk2

0 � 1Þ; ðA:9oÞ
kc2 ¼ kcH 2ðk0Þ þ k2ðk2

0 � 1Þ; ðA:9pÞ
kc3 ¼ kcH 4ðk0Þ þ k3ðk2

0 � 1Þ: ðA:9qÞ

An explicit expression for the hydrodynamic drag force
acting on a spheroid translating along its axis of revolution
results from Eqs. (19) and (A.7a). After the substitution of
Eq. (A.7a) into Eq. (19) taking bb/g ?1 and bb/g ? 0,
we obtain, respectively, the explicit formula for the drag
force acting on a no-slip spheroid given in Happel and
Brenner (1983) and the following expression for the hydro-
dynamic force exerted on a perfectly slip spheroid:

F ¼ �4pgbU
X ðk0Þ
Y ðk0Þ

; ðA:10Þ

where
X ðk0Þ ¼ 28
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

0 � 1
q

k2
0 36k4

0 � 63k2
0 þ 29

� ��
�2k0 36k6

0 � 75k4
0 þ 47k2

0 � 8
� �

coth�1k0

þ3 k2
0 � 1

� �2
12k4

0 � 5k2
0 þ 1

� �
ðcoth�1k0Þ2

i
;

ðA:11aÞ

Y ðk0Þ¼�k3
0 189k6

0�819k4
0þ1035k2

0�421
� �

þk2
0 567k8

0�1638k6
0þ1320k4

0�10k2
0�239

� �
coth�1k0

�3k0 k2
0�1

� �2
189k6

0þ105k4
0�337k2

0þ67
� �

ðcoth�1k0Þ2

þ9 k2
0�1

� �3
21k6

0þ63k4
0�25k2

0þ5
� �

ðcoth�1k0Þ3:
ðA:11bÞ

Note that, in the limiting cases of bb/g ?1 and bb/g ? 0,
all smn in Eq. (A.6) will cancel out in the solution of the
coefficients A1, D2, B4, and D4. In the limit a/b ?1, Eq.
(A.10) (and the corresponding expressions for cases of
N > 2) leads to F = 0.
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